

IFB is famous for....

.... Own electric flying platforms, Composites, Wind Energy

Research Areas

Composites

30 scientific engineers are dealing with composites

More than Lectures

Industry Cooperation

Public Funded Projects

University of Stuttgart - Dr.-Ing. Stefan Carosella

Experience in Preform Technologies Since 2005

University of Stuttgart - Dr.-Ing. Stefan Carosella

Braided Manipulator (ZASCHE handling)

Development of a Carbon Manipulator using Braiding Technology

- Low-weight carbon manipulator (70% less weight compared to steel)
- Radial braiding technology for efficient manufacturing
- High bending and torsional stiffness for easy manipulation

4. Braiding technology

Example: R.A.C.E. Plate Holder

Tailored Fibre Placement

- Load path optimized lay-up
- Low cut-off (Near-Net-Shape)
- High volume production possible
- Multimaterial process
- High Design freedom

Tailored Fibre Placement - Introduction

ZIM: Innovative design and process chain for multifunctional parts made of continuous glass or carbon reinforced thermoplastics

- Machining of thermoplastic hybrid yarns by using the TFP technology
- Development of a pressing/grouting process for the TFP preforms
- Integration of functions of the consolidated preforms by
- Materials: Carbon fiber/PA6 und glass fiber/PA66
- Analysis of characteristic material values
- Part design using the example of a torque support

Production Steps of a TFP Process

Bundesministerium für Wirtschaft und Energie

Designchain of a TFP Process

Bundesministerium für Wirtschaft ZIM und Energie

overmolding paramter

Resin Infusion Process: Vacuum Assited Infusion

VARI - Vacuum Assisted Resin Infusion

Standard set-up in single sided mould with line injection

Set-up in oven or in a closed mould with cascade injection

VAP - Vacuum Assisted Process

Resin Infusion Process: Resin Transfer Moulding (RTM)

RTM with press control and injection machine

Monitoring und control of temperature and pressure in the mould, at the inlet point,...

Field of application:

Basic research and development, prototyping, process optimization and small series production

RTM with transparent mould

Teaching application:

Visualizing the effects of vacuum, injection pressure, temperature, flow front speed, heating and cooling rates on the mould filling behaviour and laminate quality

Out of Autoclave Processes, Wet Pressing

004-005

Wet pressing with press control

Wet pressing with local reinforcement and one shot sandwich structures

3D application

Monitoring und control of temperature and pressure in the mould,

Field of application:

Basic research and development, prototyping, process optimization and small series production

Process figures:

30 sec.- 1 min. curing, part to part < 2min., 58%-60% FV, < 1% void content

New APP Concept wit OoA Curing material @IFB

www.lowflip.eu

- Novel out of autoclave manufacturing process
- 3D placement technology for plies and tapes
- Wrinkle free placement of double curved surfaces
- Energy efficient and fast heating tools

New APP Concept wit OoA Curing @IFB

3D Stitching: Equipment and Competences

University of Stuttgart - Dr.-Ing. Stefan Carosella

- Robot-supported stitching, allowing the stitching of complex 3D-Geometries
- Experience with multiple single-sided stitching techniques.
- Further understanding of through-thethickness reinforcement through stitching.
 - Improvement of interlaminar strength
 - Damage tolerance
 - Crack growth arrestment

Research Focus: Selective Stitching

Identification of the most efficient stitching configurations for CFRP stiffened panels in terms of damage tolerance

- Establishing a correlation between coupon-level and substructure-level results.
- Development of fail-safe structures that control damage growth through stitching.
- Isolation of the contribution of stitching to the inter-laminar strength of a laminate.
- Determination of the most suitable stitching techniques and positions that provide better stiffener-skin joints.
- Reduction of time and material costs, while still obtaining damage tolerant structures.
- Determination of the most appropriate method for on-line damage growth monitoring.

Simulation at IFB

Overview

Material Characterization

- Textile Characterization
- Mechanical Testing
- Structural Testing
- Non-Destructive Testing

- Different Simulation Methods (FEM, CFD, analytical)
- Process Simulation
- Structural Simulation

Manufacturing Process + Validation

- Textile Processing (Braiding, Draping, Tailored Fiber Process, Stitching)
- Resin Infusion (VARI, VAP, RTM)
- Prepreg

Simulation at IFB

Virtual Process Chain

15 Phd, 2 Teams

Manufacturing and Process Simulation Braiding simulation, Draping Simulation, Infusion Simulation, CAM

Structural Simulation

Impact, Crash, Fatigue, Design Optimization, Joints Simulation, Sandwich Structures, Effects of Defects

Software

ESI, Abaqus, LS Dyna, Hyperworks, Matlab, etc.

Hardware

HPC Cluster, Intel XEON, Quad-, Octa-, 12-Core 4,7TFlops

Multi-Scale-Modeling

Overview

Approach

- **Unit-Cell Models:**
 - Stiffness and strength calculation
 - Volume fraction influence
- Preform simulation to determine real fiber • orientation
- Implementation of the real composite • architecture into the structural simulation
- Obtain macroscopic material model for large ٠ structural simulation

OPTIMIZATION

STRUCTURAL SIMULATION

Background:

- Modelling manufacturing process of FRP Structures
- Consider physical effects
- Different levels of detail depending on application

Application:

- Predict real fiber architecture for structural simulation considering influences of manufacturing process
- Neutral data format for data transfer
- CAM-Interface
- Virtual process optimization

MULTI-SCALE MODELLING

Process Simulation

Braiding Simulation

Approach:

- Mesoscopic, explicit FEM-Simulation with beams or
 shell elements for modelling of fibers
- Possibility of dynamic and friction effects representation
- In-house pre-processor

Advantage:

- Modelling of real physical phenomenon
 - Fiber angle deviation, gaps, detaching of layers, compaction effects
- Process related part design
- Process planning and optimization possible

MULTI-SCALE MODELLING

OPTIMIZATION

STRUCTURAL SIMULATION

PROCESS SIMULATION

- Application driven modelling
 - Kinematic and macroscopic FEM-simulation with reduced simulation time
 - Mesoscopic, explicit FEM-simulation with high level of detail
- Possibility of dynamic and friction effects representation

- Modelling of real physical phenomenon
 - Fiber angle deviation, gaps, detaching of layers, compaction effects
- Process related part design
- Process planning and optimization possible

MULTI-SCALE MODELLING

Process Simulation

Infusion Simulation

Approach:

- Exp. measurement of permeability (K1, K2, K3)
- Numerical calculation of permeability through CFD
- Explicit FEM macro infusion simulation + mesomacro CFD infusion simulation
- ESI, TexGen, WiseTEx, RTM-Worx, OpenFoam, InHouse-Codes

Advantage:

- Near net shape numerical, local permeability calculation
- Design of molding
- Detailed process understanding

runner simulation

1,2 mm Mesoscopic preform architectur

Validation of permeabillity

OPTIMIZATION

STRUCTURAL SIMULATION

PROCESS SIMULATION

University of Stuttgart - Dr.-Ing. Stefan Carosella

Process Simulation

Validation of Simulation

Approach:

- Compare simulation results to real parts through optical measurement of fiber architecture or ATOS
- Automatic recognition of textile effects (gapping, fiber angle, wrinkles)
- Automatic application of measured results to structural simulation

- Process design based on real preform effects
- Prediction of real material / structural behavior based on process simulation
- Virtual material characterization

Process Realization

In-house CAD/CAM Software "FlexiCAM"

Goal:

Approach:

- Optimization of time and costs through completely offline programming of robot-based procedures and manufacturing processes
- Closing the gap between the process simulation and the real manufacturing process
- Development of a novel knowledge-based CAM-Software (FlexiCAM) for various manufacturing processes
 - Further development of FlexiCAM in regard to "Industrie 4.0"

28

MULTI-SCALE MODELLING

Material- / Failure and Damage Modelling

Approach: "Non-linear 3D-Puck" for NCF

- Orthotropic Material behavior •
- Non-linear material behavior in shear and transfer tension
- Puck failure criterion for 2D and 3D stress states ٠
- Energy based post-failure damage model
- Cohesive zone elements for delamination
- High strain rate effects on strength •

OPTIMIZATION

STRUCTURAL SIMULATION

Impact and Crash

Approach:

- Puck failure criterion for 2D and 3D stress states
- Delamination initiation through intra-laminar transverse crack modelling
- Inter-laminar crack growth (delamination) through cohesive zone modelling
- Discrete finite element model for arbitrary crack formation

Total Damage min=0.000 at SHELL 18100

0.309

0.299

- Stacked-Shell Modell
- Puck failure criterion for 2D and 3D stress states
- Non-linear material model

30

OPTIMIZATION

STRUCTURAL SIMULATION

PROCESS SIMULATION

211.00001

Structural Joints (static / dynamic / crash)

Tufted GFRP / Aluminum Bonding

Vernähung / Tufts: Elemente gedoppelt +45° 90° BM1494 X Aluminium

Goal:

- Prediction of failure
- Simulation of entire damage process
- Maximizing energy consumption

Application:

- CFRK-CFRK Adhesive Joints: high-performance structures (aerospace, automotive)
- Tufted CFRP-Alu Joints: Crash
- Bonded & Bolted: Damage Tolerance/ Crash

Mesoscopic connecting elements

STRUCTURAL

- Approach:
- Stacked-Shell / Stacked-Solid Model
- Non-linear material model
- 3D-Puck failure criterion
- Cohesive-Zone-Element: Delamination
- Mesoscopic modelling of joints / connections

Fatigue-Simulation / Residual Strength

Goal:

- Damage Tolerance Design
- Prediction of crack growth under high cycle fatigue loading
- Prediction of residual strength
- Investigation of "crack-arresting features"

Approach:

- Mesoscopic explicit simulation
- Modified cohesive zone elements for fatigue
- "Cycle-Jump" method
- XFEM
- Artificial Neural Networks

26.11.2017

32

Fold Core - Sandwich Composites

Goal:

- Prediction of stiffness and strength under static loading
- Modelling of failure in core and sandwich composites
- Preliminary design of sandwich components
- Impact modelling and energy consumption

Approach:

- Non-linear, explicit simulation
- Mesoscopic modelling of fold cores
- Shell (metal) and layered-shell (composite) elements
- User-subroutines for material modelling

Optimization

Design for Performance, Weight and Cost

Objective function minimisation

Approach:

- Identification of design variables: fiber orientation, tufting location, reinforcement fibers
- Definition of optimization functions → multiple criteria: Weight, Cost, Stiffness
- Gradient based or genetic optimization

- Fiber orientation to maximize stiffness-to-weight and stiffness-to-strength ratio
- Tufting location for optimal impact behavior
- Optimized Single-Fiber Layup (tailored fiber placement)

Optimization

Stress-Based Single Fiber Path Generation for CFRP-Structures

Approach:

- Application of standard software tools (HyperWorks, Abaqus, Nastran, LS-Dyna etc.)
- In House tool / interface development for specific applications of specialized CFRP design
- Consideration of multiple load cases

Topologieoptimierung (bspw.)

Generierung von Lastpfaden

Bewertung

Generation of Fiber Paths

- Topology optimization
- Principle stress analysis
- Automation of evaluation
- Automation of fiber path generation
- Optimized stiffness- and strength-to-weight

Analysis Optimized Design

- Meso-modelling of discrete fibers
- Considering manufacturing boundaries

Overview Material Testing

Quasistatic Testing

- Standard and non-standard tests for composites material
- Temperatures from -55°C to +250°C
- Testing loads: 500N, 2, 5, 20, 25 and 250 KN

Dynamic Testing

- 5 axial actuators (10 100 KN)
- 1 rotary cylinder (2 KNm)
- Test bay for structural and subcomponent testing

Laminate manufacturing for testing

• Goods issues testing for NCF material

Chemical laboratory

- FVC determination, Microscopy (optical, SEM)
- TGA, DMA, DSC
- Density determination

University of Stuttgart - Dr.-Ing. Stefan Carosella

Overall Permeability Characterization

Linear/Radial Permeability Determination (2D)

Through Thickness Permeability Determination (3D)

Yarn Permeability Determination (Micro Infiltration)

University of Stuttgart - Dr.-Ing. Stefan Carosella

Fatigue Testing at IFB

Coupon level

- Tension-Torsion testing
 - 100kN axial and 2kNm torsional
- 10kN and 25kN axial Test-machines
- In-Situ optical damage measurement

Loading	Force / Moment	Displaceme nt
Axial 10	10kN	250mm
Axial 25	25kN	250mm
INSTRON	100kN 2kNm	125mm

Fatigue Testing @ IFB

Structural Detail level

- Test rig development after specification
- Strain measurement
 - Optical Videoextensometer, DIC
 - Mechanical
- 64 Channels for various DAQ measurements
- Random and spectrum loading
- Up to 250kN

Fatigue Testing @ IFB

Structural level

- Structural Test-bed
 - 6x3m and 2x3 m
- Servohydraulic test cylinders
 - Axial and Torsional
- Multiaxial structural testing possible

Loading	Force / Moment	Displacement
Axial 16	16kN	250mm
Axial 100	100kN	250mm
Axial 250	250kN	125mm
Torsional	4kNm	

IFB Equipment Summary

Projects ARENA2036 DigitPro (Digitaler Prototyp)

- Closed process chain
- From CAD design to final product
- Micro-, meso- and macroscopic modelling
- Different simulation tools
- HDF5 data Format
- Braided structures
- Open-Reed-Weaving-structures
 - 50 % Development time - 10 % Weight

Numerical closed process chain for support of product design processes of FRP structures

Projects ARENA2036 Leifu (Leichtbau mit Funktionsintegration)

In LeiFu different approaches of functional integration are developed, implemented and evaluated on the basis of a FRP demonstrator module.

Additive Manufacturing @ IFB

Selective Laser Sintering (SLS)

Stereolithography (SLA)

Fused Deposition Modeling (FDM)

Processes

Load optimized design **Functional** prototypes

UV curing & postprocess optimization

3D-printed moulds & soluble cores NEW CONTRACT Fiber-reinforced **3D** printing orbon 26.11.2017 44

University of Stuttgart - Dr.-Ing. Stefan Carosella

Thank you!

Dr. Stefan Carosella

e-mail carosella@ifb.uni-stuttgart.de phone +49 (0) 711 685-60245 fax +49 (0) 711 685-62449

Universität Stuttgart Institut für Flugzeugbau Pfaffenwaldring 31, 70569 Stuttgart