

Affordable Thermoplastic Matrix CFC / Metallic Framework Structures Manufacture

Andrew Mills - Lawrence Cook, Aurele Bras - Cranfield Composites Centre

Imperial College London

Southampton

Talk

- Background
- Aims
- Concepts

Steel Auto Body – Pressing and Welding

CFC Auto Body – Alfa 4C

Need an equivalently fast process for lightweight composites

Current CFRP Automotive Bodies

- 'Lightish' Panels now sorted for niche, medium and rate production
- BMW HP RTM
- Audi Gap RTM
- Dieffenbacher Wet Pressing
- Toho Tenax PvP
- Hexcel HexMc
- Hexcel, Cytec, Gurit Pressed prepreg

What about Frameworks?

McLaren MP412C - Aluminium

Audi R8 - Aluminium

Complex assembly and heavy

Porsche 918 - CFC

Very light weight – but extreme labour cost

CFC Frame beams/ struts are lightweight - Joints are tricky

Audi Concept – Strebencreuz

- Fibre angle lay up precision is essential to provide
 - framework stiffness
 - strength
- Placing fibres to match loads is too slow and costly
- Flowing discontinuous fibres cannot provide this
- Metals provide isotropic stiffness and strength very cheaply
- Need ...Right material right place

The Challenge

• How to design and build CFC strut and metallic joint frameworks

Aim

- Investigate the feasibility of manufacturing exceptionally lightweight framework structures appropriate for >5000 P.A.
 production using hybrid CFRP / Metals
- Identify and assess potential solutions for:
 - -Weight
 - -Manufacturing rate and automation potential
 - -Cost

Conventional Joining Techniques

All Slow and costly for thermoset CFRPbut thermoplastics are different....

Thermoplastic matrix composites?

Why we have been slow to use them for structural applications?

- The very stiff ones are processed annoyingly hot
 - Tool and process cost issue
- Bonding and bolting are worrying
 - Adhesion and creep -do you need to tighten bolts in service?
- Floppy when hot
 - Demoulding from an isothermal tool is tricky
 - Warm tool stamping means robots have to rush and surfaces aren't pretty
 - Latest automotive epoxies can cure in 60 seconds (3mm laminate)
- Crystallinity and shrinkage complications
 - Cooling rate needs to be considered

• BUT –

- They allow us to reshape parts post moulding
- This may revolutionise high rate manufacturing

Pull-braiding (Braiding + Pultrusion)

Braiding

PROCESS ADVANTAGES

- Continuous lowest cost process
- Enables fibre angle tailoring providing very lightweight
- Curved profiles can be also obtained

Pultrusion

CIMComp

Framework Joining Concept A – Clinching

Concept B – Crimping

Concept C – Flow Drilled Joint (FDJ)

EPSRC

Concept D – Dimple Interlocking

Heat press sheet metal onto CFRTP with weldable sheet

- We look forward to showing you some exciting schemes to investigate in detail and scale up –August 2017
- Current advisory partners:
 - -AMRC
 - -Expert Automation
- Future proposed additional partners:
 - -Automotive design and manufacture+?

The EPSRC Future Composites Manufacturing Hub

Imperial College London

LINITED KINGDOM + CHINA + MALAYSU