Technologies framework for Automated Dry Fibre Placement (ADFP)

Kevin Potter, Tom Turner
Technologies framework for Automated Dry Fibre Placement

• Background
• Opportunities
• Challenges
• Initial programme
• Opportunities for involvement
Background
The emergence of Automated Dry Fibre Placement (ADFP), where dry fibre tows are retained by a polymer binder, provides capability to exploit the advantages of resin infusion to form highly complicated and integrated parts with the versatility and repeatability of AFP.

ADFP is a relatively new technology and many challenges remain, primarily around the fundamental understanding of the materials, effects of processing parameters and the influence of tailored preforms on infusion.

Key to the development of ADFP is the ability to accurately predict optimal processing windows for a given range of parameters, eg. temperature, feed rate and compaction pressure.

We will also be looking at dry fibre approaches beyond “conventional” DFAFP.
Opportunities
Dry fibre AFP offers the potential for

- Significantly improved capability to “steer” fibres
- The potential to integrate tufting or stitching for complex preform integration
- The possibility to design in flow channels or vascular structures
- Increasing the rate of deposition
Challenges
We need to understand

How to optimise binders

The deformation mechanics of bound and dry tows

Origins and impacts of defects in DFAFP

Understanding the effects of tow steering

Cost modelling & process design

Permeability control & flow enhancement
We need to understand

Integrating preforms

Postforming of tailored blanks

Deposition rate improvements

DFP machinery

Developing beyond DFAFP
Initial programme
Programme is currently under development based on prior experience and expertise at Bristol and Nottingham including

Access to AFP experimental simulation equipment and commercial AFP

Testing facilities

Permeability testing & flow simulation strength

Tack testing background

Process automation experience

Dealing with dry fibres & integrated preforming approaches
Bristol initial emphasis

Minimum cost DFAFP – binder application on the fly

In-process inspection for defect formation

Steered preform quality assessment

Production line / cost modelling

Integrating DFAFP with woven or NCF in complex preforms

Resin issues
Nottingham initial emphasis

PhD 1 – Process architecture
 High rate / low cost processes – feasibility assessment
 Integrated process development – cost and performance potential

PhD 2 – Material design & deposition
 Fabric / tow compaction & deformation mechanics
 Permeability & liquid resin processes – engineered flow control
 Material optimisation for deposition – Tack testing
Opportunities for involvement
Potential work packages

Process design
- Establish requirements for next generation structures
- Establish rate limiting factors in deposition processes
- Process architecture alternatives
- Cost modelling

Material design & deposition mechanics
- Alternative material formats
- Binder issues & tack
- Dry tow deformation

Laminate design
- Permeability issues & permeability control
- Defect analysis
It is important to note that this is an EPSRC funded research programme aiming at developing a fundamental understanding of advanced dry fibre processing techniques so the core activity will be an academic programme at low TRL.

We are very keen to have industrial input as to what are seen as the key challenges from an industry viewpoint requiring fundamental understanding.

If industry partners have specific targets then at low TRL these can be tackled via sponsorship of PhD students and at higher TRL via the EngD scheme.

We would strongly encourage industry partners to get involved in the project as it develops.
The EPSRC Future Composites Manufacturing Hub